Population Ecology II: Life tables

What is a Life Table?

- A more sophisticated method for examining population abundance is to construct a life table
- This table will have a schedule of all births and deaths in all, or more likely some portion, of our population

Two types of life table

- Cohort (or dynamic) life table: follow <u>all</u> offspring born at a given time (the cohort) from birth until the death of the last individual.
 - This is the preferred way to generate a life table
 - It works best for organisms that live for a relatively short time period
- Static (or time-specific) life table: count all individuals alive <u>at a given time</u> and record the age of each
 - This method is less preferred (we'll see why later...)
 - However, it is simpler to use for longer-lived organisms that the researcher may not be able to follow across the organism's entire lifetime

What information can you get from a life table?

- Population age structure—Are there lots of: young individuals? Old individuals? Reproductive age individuals?; and similar questions
- Population growth rate—How fast is the population size growing (or shrinking)?
- Population survivorship patterns—Does most mortality occur in the very young? The very old? Or equally across all ages?

Life table variables

- Life tables may vary in what information they contain, but we'll use the following variables:
- *x* = the age (ex: 0, 1, 2, 3 years old) or stage (ex: egg, larvae, nymph, adult) class
- n_x = the number of individuals in each age/stage x
- I_x = the percent of the original cohort that survives to age/stage $x (= n_x / n_0)$
- $d_x =$ the probability of dying during age/stage $x (= l_x l_{x+1})$
- q_x = the percent of dying between age/stage x and age/stage x+1 (= d_x / l_x)
- *b_x* = the number of offspring produced per individual in age/stage x

A cohort life table example

(complete with fake data for the real spider Apopyllus now)

x(months)	n _x	I_{x}	d_x	q_x
0	250			
1	125			
2	86			
3	68			
4	53			
5	6			
6	0			

We get this by simply counting spiders alive at each age x (in this case, at the start of each month)

A cohort life table example (complete with fake data for the real spider Apopyllus now) x (months) 1.000 0 250 0.500 2 86 0.344 68 0.272 4 53 0.212

0.024

0.000

0

6

We get this by dividing each n by n_{0} , or 250 (try it yourself!)

A cohort life table example (complete with fake data for the real spider

Apopyllus now)

x(months)	п	l _x	d_{x}	q_x
0	250	1.000	0.500	
1	125	0.500	0.156	
2	86	0.344	0.072	
3	68	0.272	0.060	
4	53	0.212	0.188	
5	6	0.024	0.024	
6	0	0.000		

We get this by taking each /and subtracting / from it the /at the next older age

A cohort life table example (complete with fake data for the real spider <i>Apopy/lus now</i>)							
x (months)	n _x	l _x	d _x	q_x			
0	250	1.000	0.500	0.500			
1	125	0.500	0.156	0.312			
2	86	0.344	0.072	0.209			
3	68	0.272	0.060	0.221			
4	53	0.212	0.188	0.887			
5	6	0.024	0.024	1.000			
6	0	0.000					

We get this by dividing each *d* value by the corresponding / value

A cohort life table example (complete with fake data for the real spider Apopyllus now)

x (months)	n _x	l _x	b _x	$l_x b_x$
0	250	1.000	0	
1	125	0.500	0	
2	86	0.344	0	
3	68	0.272	0	
4	53	0.212	17.1	
5	6	0.024	34.6	
6	0	0.000	0	
w, let's assum			of	

A cohort life table example (complete with fake data for the real spider Apopyllus now)

x (months)	n _x	/ <u>x</u>	b _x	l _x b _x
0	250	1.000	0	0
1	125	0.500	0	0
2	86	0.344	0	0
3	68	0.272	0	0
4	53	0.212	17.1	3.63
5	6	0.024	34.6	0.83
6	0	0.000	0	0

These are then the values you get multiplying each b value by the corresponding / value

What does the A. now life table tell us?

- These spiders all die before they reach 6 months of age
- Lots of spiders die before reaching 1 month old
- After 1 month, survival rate is relatively constant until after spiders reach 4 months of age
- Maturity occurs at age 4 months
- 5 month old spiders have twice as many offspring as 4 month old spiders

Before talking about some information we can glean from a life table (and answer why that I_xb_x column is in there), let's look at a sample static life table. Recall that this is obtained by simply going out and counting all individuals alive at a given time, sorting them by age or stage.

A static life table example

(with fake data for the real weevil Notiocryptorrhynchus punctatocarinulatus)

X	n _x	l _x	d_x	q_x
0	500	1.000	0.270	0.270
1	365	0.730	0.472	0.647
2	129	0.258	-0.058	-0.225
3	158	0.316	0.160	0.506
4	78	0.156	0.124	0.795
5	/ 16	0.032	0.032	1.000
6	0	0.000		

Problem 1: We have more age 3 individuals than age 2 individuals! This can't happen in a cohort table. Problem 2: We have negative values for d_2

What does this weevil's life table tell us?

- A lot less than the cohort life table!! But...
- This weevil dies before reaching 6 months of age.
- Survival to age 1 month is relatively high; most mortality occurs between 1 and 3 months.
- We have no information on births, since we do not observe any (we essentially just take a "snapshot" of the population at a single point in time).

Stage (x)	Number observed at start of each stage a _x	Proportion of original cohort surviving to start of each stage <i>l</i> _s	Proportion of original cohort dying during each stage d _s	Mortality rate q.	log ₁₀ e,	logials	$\begin{split} &\log_{10}a_x - \log_{10}a_{x+1} \\ &= k_x \end{split}$	Eggs produced in each stage F,	Eggs produced per surviving individual in each stage m,	Eggs produced per original individua in each stage <i>l</i> ₄ <i>m</i> ,
Eggs (0)	44 000	1.000	0.920	0.92	4.64	0.00	1.09	121	-	-
Instar I (1)	3513	0.060	0.022	0.28	3.55	-1.09	0.15	-	-	(100 C
Instar II (2)	2529	0.058	0.014	0.24	3.40	-1.24	0.12	-	22	2
Instar III (3)	1922	0.044	0.011	0.25	3.28	-1.36	0.12	-		-
Instar IV (4)	1461	0.033	0.003	0.11	3.16	-1.48	0.05	-		-
Adults (5)	1300	0.030			3.11	-1.53	_	22617	17	0.51

 $R_0 = \sum l_s m_s = \frac{\sum F_s}{d_0} = 0.51.$

A more detailed, actual cohort life table fo the grasshopper *Chorthippus bruneus*

Age (years)	Number of individuals observed of age x				Smoothed		
x	a _x	l_x	d_x	q_{π}	l_x	d_x	q_x
1	129	1.000	0.116	0.116	1.000	0.137	0.137
2	114	0.884	0.008	0.009	0.863	0.085	0.097
2 3 4	113	0.876	0.251	0.287	0.778	0.084	0.168
	81	0.625	0.020	0.032	0.694	0.084	0.121
5	78	0.605	0.148	0.245	0.610	0.084	0.137
6	59	0.457	-0.047	-	0.526	0.084	0.159
7	65	0.504	0.078	0.155	0.442	0.085	0.190
8	55	0.426	0.232	0.545	0.357	0.176	0.502
9	25	0.194	0.124	0.639	0.181	0.122	0.672
10	9	0.070	0.008	0.114	0.059	0.008	0.141
11	8	0.062	0.008	0.129	0.051	0.009	0.165
12	7	0.054	0.038	0.704	0.042	0.008	0.198
13	2	0.016	0.008	0.500	0.034	0.009	0.247
14	1	0.080	-0.023	-	0.025	0.008	0.329
15	4	0.031	0.015	0.484	0.017	0.008	0.492
16	2	0.016	-	-	0.009	0.009	1.000

Summary information obtained from the cohort life table: R_0

- We can use the cohort LH data to measure several important population variables.
- The first is R₀ or net reproductive rate (a measure of the change in population size), where:

 $R_0 = \Sigma I_x b_x$

- Note that Σ is the summation sign (that is, we add up all the *l*,*b*, values across the entire table)
- For our spider, $R_0 = 0 + 0 + 0 + 0 + 3.63 + 0.83 + 0 = 4.46$
- Thus, on average, each spider in the initial cohort (the age 0 group of 250) has 4.46 offspring. Thus, the next cohort will start off with 1115 (=250 * 4.46) spiders!

Summary information obtained from the cohort life table: *T*

- The second important summary variable is *T*, the generation time (the time between the birth of one cohort and the birth of their offspring)
- It is calculated using the following formula: $T = (\sum x l_x b_x) / R_0$
- So, for our spider, T = (0 + 0 + 0 + 0 + 1) + (4*3.63] + (5*0.83] + 0) / 4.46 = 4.2 months
- This tells us that, on average, cohort 1 begins producing offspring (cohort 2) 4.2 months after cohort 1 individuals are born

Summary information obtained from the cohort life table: *r*

- The third important summary variable is r_i the per capita rate of increase (like R_{ip} a measure of the change in population size)
- It is calculated using the following formula: $r = \ln R_0 / T$
- Note that "In" is the shorthand for the natural log function
- For our spider, *r* = ln 4.46 / 4.2 = 0.36
- r is more difficult to interpret than is R_ρ at least for now. Suffice it to say that this tells us that our spider population is experiencing more births than deaths.

Some notes on interpreting R_0 and r

- First, note that R₀ and r do <u>not</u> give the same value!!
- *R₀* has the following properties:
 - If $R_0 > 1$, the population is increasing in size
 - If $R_0 < 1$, the population is decreasing in size
 - If $R_0 = 1$, the population size is constant
- r has the following properties:
 - If r > 0, the population is increasing in size
 - If *r* < 0, the population is decreasing in size
 - If r = 0, the population size is constant

Stable Age Distribution

 The stable age distribution (SAD) is reached when each age group individually always increases by the exact same value each time period

Age (x)	Time 1	Time 2	Time 3	Time 4
0	100	200 400		800
1	75	150 300		600
2	50	100	200	400
3	40	80 160		320
4	20	40	80	160
5	10	20 40		80
6	2	4	8	16

Stable Age Distribution II

 The population below would <u>not</u> be at an SAD

Age (x)	Time 1	Time 2	Time 3	Time 4
0	100	175	290	670
1	75	150	300	600
2	50	100	200	400
3	40	60	100	220
4	20	25	40	90
5	10	12	22	25
6	2	3	5	6

Survivorship Curves

- A survivorship curve plots the x values (the ages or stages) on the horizontal axis, and the l_x values on the vertical axis.
- Two biologists, Pearl and Deevey, categorized these curves into three main types: Type I, Type II, and Type III survivorship curves (not very original names, however).
- Type I curves are typical of many long-lived organisms (such as elephants, tigers, humans) with lots of parental care of young
- Type III curves are typical of short-lived organisms (such as insects) and many plants, where offspring mortality is high.
- Type II curves are fairly uncommon.

Population Age Structure

- A third bit of summary information we can obtain from the life table comes is an age structure diagram
- To obtain this, we plot the # of individuals in each of our age or stage classes (the x categories).
- These plots can be in the form of bar graphs (or histograms), or in the form of age pyramids.
- One thing we gain by looking at these is a prediction about how rapidly the population should grow (or shrink)
 - If the pyramid is "bottom-heavy" there are lots of young individuals = good chance of growth
 - If the pyramid is more equal across age groups there are fewer young individuals = lower chance of growth